Mitochondrial Hep27 is a c-Myb target gene that inhibits Mdm2 and stabilizes p53.
نویسندگان
چکیده
The ever-expanding knowledge of the role of p53 in cellular metabolism, apoptosis, and cell cycle control has led to increasing interest in defining the stress response pathways that regulate Mdm2. In an effort to identify novel Mdm2 binding partners, we performed a large-scale immunoprecipitation of Mdm2 in the osteosarcoma U2OS cell line. One significant binding protein identified was Hep27, a member of the short-chain alcohol dehydrogenase/reductase (SDR) family of enzymes. Here, we demonstrate that the Hep27 preprotein contains an N-terminal mitochondrial targeting signal that is cleaved following mitochondrial import, resulting in mitochondrial matrix accumulation of mature Hep27. A fraction of the mitochondrial Hep27 translocates to the nucleus, where it binds to Mdm2 in the central domain, resulting in the attenuation of Mdm2-mediated p53 degradation. In addition, Hep27 is regulated at the transcriptional level by the proto-oncogene c-Myb and is required for c-Myb-induced p53 stabilization. Breast cancer gene expression analysis correlated estrogen receptor (ER) status with Hep27 expression and p53 function, providing a potential in vivo link between estrogen receptor signaling and p53 activity. Our data demonstrate a unique c-Myb-Hep27-Mdm2-p53 mitochondria-to-nucleus signaling pathway that may have functional significance for ER-positive breast cancers.
منابع مشابه
Phosphorylation of Daxx by ATM Contributes to DNA Damage-Induced p53 Activation
p53 plays a central role in tumor suppression. It does so by inducing anti-proliferative processes as a response to various tumor-promoting stresses. p53 is regulated by the ubiquitin ligase Mdm2. The optimal function of Mdm2 requires Daxx, which stabilizes Mdm2 through the deubiquitinase Hausp/USP7 and also directly promotes Mdm2's ubiquitin ligase activity towards p53. The Daxx-Mdm2 interacti...
متن کاملMDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output.
MDM2 is a key regulator of the p53 tumor suppressor acting primarily as an E3 ubiquitin ligase to promote its degradation. MDM2 also inhibits p53 transcriptional activity by recruiting histone deacetylase and corepressors to p53. Here, we show that immunopurified MDM2 complexes have significant histone H3-K9 methyltransferase activity. The histone methyltransferases SUV39H1 and EHMT1 bind speci...
متن کاملMdmx stabilizes p53 and Mdm2 via two distinct mechanisms.
The p53 protein maintains genomic integrity through its ability to induce cell cycle arrest or apoptosis in response to various forms of stress. Substantial regulation of p53 activity occurs at the level of protein stability, largely determined by the activity of the Mdm2 protein. Mdm2 targets both p53 and itself for ubiquitylation and subsequent proteasomal degradation by acting as an ubiquiti...
متن کاملARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways
The INK4a-ARF locus encodes two unrelated proteins that both function in tumor suppression. p16INK4 binds to and inhibits the activity of CDK4 and CDK6, and ARF arrests the cell cycle in a p53-dependent manner. We show here that ARF binds to MDM2 and promotes the rapid degradation of MDM2. This interaction is mediated by the exon 1beta-encoded N-terminal domain of ARF and a C-terminal region of...
متن کاملAssociation of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.
We have demonstrated previously that the oncoprotein Mdm2 has a ubiquitin ligase activity for the tumor suppressor p53 protein. In the present study, we characterize this ubiquitin ligase activity of Mdm2. We first demonstrate the ubiquitination of several p53 point mutants and deletion mutants by Mdm2. The point mutants, which cannot bind to Mdm2, are not ubiquitinated by Mdm2. The ubiquitinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 30 16 شماره
صفحات -
تاریخ انتشار 2010